首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87185篇
  免费   2230篇
  国内免费   1911篇
化学   31573篇
晶体学   926篇
力学   7323篇
综合类   95篇
数学   33130篇
物理学   18279篇
  2023年   155篇
  2022年   209篇
  2021年   303篇
  2020年   379篇
  2019年   437篇
  2018年   10707篇
  2017年   10511篇
  2016年   6525篇
  2015年   1421篇
  2014年   893篇
  2013年   1062篇
  2012年   4634篇
  2011年   11322篇
  2010年   6317篇
  2009年   6679篇
  2008年   7256篇
  2007年   9277篇
  2006年   721篇
  2005年   1768篇
  2004年   1944篇
  2003年   2354篇
  2002年   1495篇
  2001年   646篇
  2000年   532篇
  1999年   362篇
  1998年   373篇
  1997年   272篇
  1996年   308篇
  1995年   223篇
  1994年   158篇
  1993年   162篇
  1992年   109篇
  1991年   119篇
  1990年   84篇
  1989年   85篇
  1988年   79篇
  1987年   73篇
  1986年   67篇
  1985年   54篇
  1984年   57篇
  1983年   47篇
  1982年   45篇
  1981年   50篇
  1980年   52篇
  1979年   51篇
  1914年   45篇
  1913年   40篇
  1912年   40篇
  1909年   41篇
  1908年   40篇
排序方式: 共有10000条查询结果,搜索用时 139 毫秒
21.
Developing efficient counter electrodes (CEs) and quantum dots made of earth-abundant and non-toxic elements is essential but still challenging for quantum dot-sensitized solar cells (QDSSCs). Here, we report a facile strategy to prepare self-supported and robust CoS2 and NiS nanocrystals-assembled nanosheets directly grown on carbon paper (MSx NS@CP) as efficient counter electrodes for QDSSCs. Such CEs integrate the merits of fast electron transfer from interconnected conductive scaffold, efficient mass transfer from hierarchically vertical nanosheet on 3D open substrate, as well as abundant highly active catalytic sites from metal sulphide nanocrystal units. As a result, QDDSCs based on such CoS2 NS@CP and NiS NS@CP CEs achieve a PCE of 8.88% and 7.53%, respectively. The detailed analyses suggest that CoS2 NS@CP has the highest catalytic activity and shows the lowest charger transfer resistance, leading to the highest PCE. These findings may inspire the design and exploration of other self-supported efficient CEs by integrating highly active catalysts onto 3D conductive networks for efficient QDSSCs.  相似文献   
22.
Dual-phase-lag equation for heat conduction is analyzed from the point of view of non-equilibrium thermodynamics. Its first-order Taylor series expansion is consistent with the second law as long as the two relaxation times are not negative.  相似文献   
23.
It is the nature of crystals to exist in different polymorphs. The recent emergence of two-dimensional (2D) materials has evoked the discovery of a number of new crystal phases that are different from their bulk structures at ambient conditions, and revealed novel structure-dependent properties, which deserve in-depth understanding and further exploration. In this contribution, we review the recent development of crystal phase control in 2D materials, including group V and VI. transition metal dichalcogenides (TMDs), group IVA metal chalcogenides and noble metals. For each group of materials, we begin with introducing the various existing crystal phases and their structure-related properties, followed by a detailed discussion on factors that influence these crystal structures and thus the possible strategies for phase control. Finally, after summarizing the whole paper, we present the challenges and opportunities in this research direction.  相似文献   
24.
25.
Since most of the control strategies for air-breathing hypersonic vehicles (AHVs) concentrate on the control-oriented models built at/around a specific working point, it is somewhat hard to extend them to the broader flight envelop. Aiming at the above deficiency, this paper formulates the dynamics of AHVs as several sub-models, which switch to each other in accordance with the flight condition and make up of the control-oriented switched model (COSM). With the aid of the COSM, two adaptive tracking controllers are proposed for the purposes of velocity tracking and altitude tracking, sequentially. By utilizing neural networks and designing robust control laws, the possible changes on the force and moment coefficients in the COSM are successfully handled. The time-varying inertia parameters of AHVs are also considered at design level. It is worth emphasizing that while this strategy is developed based on a switched model, the resulting control algorithm is continuous with no connection to the switching signal. Analysis indicates that both velocity and altitude tracking errors remain small within the whole flight envelop, which is further confirmed by a simulation study.  相似文献   
26.
Rotating detonation combustors (RDC) are at the forefront of pressure gain combustion (PGC) research. The simplicity in design and the ease of assembly makes it a promising technology that could be integrated into existing combustor architectures. This is, however, coupled with the considerable complexities of the detonation-based flow field, and the associated modes and coupling mechanisms. The current paper is an overview of the research done at the University of Cincinnati to address some of the challenges and questions pertaining to the physics of RDC operation. Issues such as combustor geometry, injection schemes and mixing, varied reactants behavior and modes of RDC operation are discussed. The effects of pressurization of the combustor, along with other detonation enhancement strategies are also deliberated upon. When appropriate, parallels are drawn to the phenomena of high frequency combustion instabilities to address the similarities in observations between the two fields.  相似文献   
27.
28.
29.
正Living organisms have developed their unique strategies during the natural evolution for building hard tissues with minerals, including silica, calcium carbonate, calcium phosphate, and ferric oxide [1]. Such biomineralized materials generally have complex hierarchical structures with excellent mechanical properties. Although bioinspired approaches have led to the creation of well-defined synthetic structural materials ranging from micro to macro scales, the rational design of discrete biomimetic structures at the nanoscale remains a grand challenge.  相似文献   
30.
Mesoscopic modeling at the pore scale offers great promise in exploring the underlying structure transport performance of flow through porous media. The present work studies the fluid flow subjected to capillarity-induced resonance in porous media characterized by different porous structure and wettability. The effects of porosity and wettability on the displacement behavior of the fluid flow through porous media are discussed. The results are presented in the form of temporal evolution of percentage saturation and displacement of the fluid front through porous media. The present study reveals that the vibration in the form of acoustic excitation could be significant in the mobilization of fluid through the porous media. The dependence of displacement of the fluid on physicochemical parameters like wettability of the surface, frequency along with the porosity is analyzed. It was observed that the mean displacement of the fluid is more in the case of invading fluid with wetting phase where the driving force strength is not so dominant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号